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Abstract

Considering the non-uniformity of the flow velocity distribution in fluid-conveying pipes caused by the viscosity of

real fluids, the centrifugal force term in the equation of motion of the pipe is modified for laminar and turbulent flow

profiles. The flow-profile-modification factors are found to be 1.333, 1.015–1.040 and 1.035–1.055 for laminar flow in

circular pipes, turbulent flow in smooth-wall circular pipes and turbulent flow in rough-wall circular pipes, respectively.

The critical flow velocities for divergence in the above-mentioned three cases are found to be 13.4%, 0.74–1.9% and

1.7–2.6%, respectively, lower than that with plug flow, while those for flutter are even lower, which could reach 36%

for the laminar flow profile. By introducing two new concepts of equivalent flow velocity and equivalent mass,

fluid-conveying pipe problems with different flow profiles can be solved with the equation of motion for plug flow.

& 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

The fluid-conveying pipe is a canonical problem in the study of fluid-structure interactions. Since the early works by

Ashley and Haviland (1950), Housner (1952), Benjamin (1961a), Gregory and Paı̈doussis (1966) and Paı̈doussis and

Issid (1974), there are approximately 550 significant publications on this subject, counting up to 2003 (Paı̈doussis, 2008).

As noted by Paı̈doussis and Li (1993), this has become a ‘‘model dynamical problem’’, a new paradigm in dynamics. In

its simplest form, the governing equation of motion is simple enough to solve, yet can demonstrate generic features

of much more complex dynamical systems, such as divergence (pitchfork bifurcation), single-mode flutter

(Hopf bifurcation), coupled-mode flutter (Paı̈doussis flutter) and restabilization; moreover, the theoretical results can

in many cases be validated by relatively easy-to-mount and to-perform experiments. As a result, this problem has been

used as a tool for understanding the behaviour of more complex systems, or as a vehicle in the search of new

phenomena and new dynamical features.
e front matter & 2010 Elsevier Ltd. All rights reserved.
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In this paper, the focus is on the effects of the fluid viscosity on the governing equation of motion of pipes conveying

fluid and on the critical velocities for both divergence and flutter. Although one possible effect of the fluid viscosity, the

friction, has been considered in the derivation of the governing equation of motion, another one, the non-uniformity of

the flow velocity distribution has been ignored to date.
2. Modification of the centrifugal force term of the equation of motion of the fluid-conveying pipe

The simplest form of a linear differential equation of motion of pipes conveying fluid is given by (see, e.g., Benjamin,

1961a; Gregory and Paı̈doussis, 1966; Paı̈doussis and Issid, 1974; Paı̈doussis 1998, 2005, 2008)
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where EI is the flexural rigidity of the pipe, M the mass of fluid per unit length, m the mass of the pipe per unit length, U

the mean flow velocity and w=w(x, t) the transverse displacement of the pipe at the axial coordinate x and time t.

The dimensionless form of Eq. (1) can be written as
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by defining the dimensionless variables and parameters
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where L is the pipe length, b the mass ratio and u the dimensionless flow velocity.

Sequentially, the terms in Eq. (1) are associated with: flexural restoring forces, centrifugal forces of the fluid caused by

the curvature of the pipe, Coriolis forces of the fluid caused by pipe rotation and inertial forces of the pipe and the

internal fluid.

In Eq. (1), gravity, internal damping, a possible elastic foundation, externally imposed tension and pressurization

effects are either absent or neglected. If some of these factors are taken into account, more terms will appear in this

equation. The interested readers are referred to Paı̈doussis (2008, Appendix A) for a fuller form of the linear equation of

motion. But, however sophisticated the equation may be, the terms in Eq. (1) are the primary ones. For plates and shells

in axial flow (see, e.g., Guo and Paı̈doussis, 2000; Paı̈doussis, 2004), the equation of motion also has terms similar to

those in Eq. (1).

The fluid forces in Eq. (1) are modelled in terms of an ideal-fluid flow (plug flow) model. If a real fluid flow model is to

be considered, the viscosity of the fluid may have two effects on the equation: (i) the friction between the fluid and the

pipe wall and (ii) the non-uniformity of flow velocity distribution over the cross-section.

The former was first noted and accounted for by Benjamin (1961a) and was later elaborated upon by Paı̈doussis

(1998, 2005, 2008): viscous traction on the pipe and viscous pressure-loss forces exactly cancel out, and hence do not

explicitly appear in Eq. (1). In fact, if the pipe and the fluid it conveys are taken as an ensemble, the frictional forces

between them are internal forces, and hence should not appear in the equation of motion. As for the latter, some

qualitative discussion was provided by Benjamin (1961b), namely that for the MU2 term, ‘‘U2 would more accurately

be interpreted as the average of the squared velocity’’; Benjamin then goes on to say that for turbulent pipe flows ‘‘the

mean square is only 1% or 2% in excess of the square of the mean’’, and considers it not worthwhile to apply such a

small correction. However, nothing was said by Benjamin or anyone else heretofore regarding laminar flows, where the

velocity profile is much more different from either that of a plug flow or a fully developed turbulent flow.

In fact, if the non-uniformity of flow velocity distribution is to be considered, the centrifugal force term and the

Coriolis force term in Eq. (1) should be calculated for every fluid particle and then integrated over the cross-sectional

area. Since the Coriolis force term is a linear function of the flow velocity, integration will yield the same result as in

Eq. (1) if U is taken as the mean flow velocity (discharge rate divided by the inner cross-sectional area of the pipe).

However, for the centrifugal force term, the result of integration will be greater than that in Eq. (1) because the

centrifugal force is a quadratic function of the flow velocity. Therefore, for viscous fluid flow, the coefficient of

the second term in Eq. (1) should be taken, instead of MU2, as
R

A
ru2dA, in which r is the fluid density and A the area of

the inner cross-section of the pipe. We denote this integral asZ
A

ru2dA¼ aMU2; ð4Þ
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in which a is the flow-profile-modification factor in the centrifugal force (obviously, for plug flow, a=1). Thus, the

modified differential equation of motion of the fluid-conveying pipe takes the form
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and its dimensionless form becomes
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3. Flow-profile-modification factors with different flow profiles

3.1. Laminar flow in circular pipe

When the Reynolds number Reo2300, the flow in a circular pipe is laminar flow (Poiseuille flow), and the flow

velocity profile is represented by the well-known parabolic formula (see, e.g., Streeter et al., 1998)

uðrÞ ¼ umax 1�
r

R

� �2� �
; ð7Þ

where R is the inner radius of the pipe, r the distance from the fluid particle to the centreline of the pipe and umax the

maximum flow velocity at the centre of the pipe.

If we still use U to denote the mean flow velocity in the pipe, then we have

U ¼
1

A

Z
A

udA¼
1

pR2
2p
Z R

0

umax 1�
r

R

� �2� �
rdr¼

1

2
umax; ð8Þ

and Z
A

ru2dA¼ 2p
Z R

0

ru2max 1�
r

R

� �2� �2
rdr¼

1

3
pR2ru2max ¼

4

3
MU2: ð9Þ

Therefore; a¼
4

3
� 1:333:

3.2. Turbulent flow in circular pipe

When the Reynolds number Re42300, the flow in a circular pipe may become turbulent, and the flow velocity can be

represented as its time-average u plus a fluctuation u0, i.e.

u¼ uþ u0; ð10Þ

thus Z
A

udA¼

Z
A

udAþ

Z
A

u0dA; ð11Þ
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Z
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u2dAþ 2

Z
A

uu0dAþ

Z
A
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The time-average of the fluctuating flow velocity at every point in the space is zero. Because of this and the symmetry

of the circular cross-section, the spatial-average of the fluctuating flow velocity over the cross-sectional area must be

zero at any time. Therefore, the second term on the right-hand side of Eqs. (11) and (12) can be taken as zero. For pipes,

the turbulence intensity I�9u
0

9/U is typically between 1% and 5%, and hence the third term on the right-hand side of

Eq. (12) is less than 0.25% of the first term and may be neglected.

In the following, the first-term integrals on the right-hand side of Eqs. (11) and (12) will be evaluated for different

laws of turbulent flow velocity profile. We hereafter drop the over-bars of the time-averaged velocities for simplicity.
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There have been two laws to describe the turbulent velocity profile: the logarithmic law (log law) and the exponential

law (power law), both of which were first proposed in the early 20th century. The log law has been more widely accepted

by fluid mechanicians than the power law, while the power law has been more popular with engineers. Thus, when

Barenblatt et al. (1997) proposed a new power law, it became surprisingly controversial. The controversy even escalated

into fierce arguments between log-law disciples and power-law lovers at several international conferences (White, 2006).

A laudable effort to resolve the debate was finally offered by Buschmann and Gad-el-Hak (2003), who analyzed 109

different data sets by both the log and power laws. They concluded that the two laws gave comparable agreement and

neither was statistically superior. As neutral observers, we use both laws in the following analyses.
3.2.1. Logarithmic law

The widely accepted time-averaged velocity profile in the intermediate region of turbulent flow is the von K�arm�an–Prandtl
universal log law of the wall (see, e.g., Streeter et al., 1998; White, 2006)

u

u�
¼

1

k
ln

u�y

n
þ B; ð13Þ

where u� ¼
ffiffiffiffiffiffiffiffiffiffi
tw=r

p
is the friction velocity, tw the wall shear stress (tw=DpR/2, Dp is the pressure drop per unit length), y the

distance from the wall and n the fluid kinematic viscosity. The parameters k (von K�arm�an’s constant) and B are constants.

For smooth-wall pipes, Nikuradse’s experiments yielded kE0.40 and BE5.5, but later data correlations use the value

kE0.41 and BE5.0 (see White, 2006), which we shall adopt for use in this paper.

For rough-wall pipes, the velocity profile is given by (White, 2006)
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where e represents the diameter of sand grains.

By defining the ‘‘equivalent’’ viscosity

ne ¼ nþ 0:3u�e; ð15Þ

we can rewrite Eq. (14) in the form of Eq. (13)

u
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For circular pipes, both Eqs. (13) and (16) can be represented in terms of the maximum velocity umax at the centreline

y=R in the same form

u¼ umax þ
u�

k
ln

y

R
: ð17Þ

Eqs. (13), (16) and (17) hold in the turbulent zone only. However, the thickness d of the viscous sub-layer near the

wall plus the buffer layer and the flow velocities in these regions are so small that the integration over them can be

neglected. Thus, we have
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and
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hence

a¼ 1þ
5

4

u�

kU

� �2
: ð20Þ

What we should note is that the shear velocity un is not a constant; it increases with increasing mean velocity U, but is

not exactly proportional to it. Typically, U/un ranges from 15 to 25. Fig. 1 shows the variation of the flow-profile-

modification factor a in this range.

From Eq. (18), we find that

u�

kU
¼

2

3

umax�U

U

� �
: ð21Þ

Substituting into Eq. (20), we obtain an alternate expression for a in terms of U and umax, namely

a¼ 1þ
5

9

umax�U

U

� �2

: ð22Þ

As aforementioned, we have the same turbulent velocity profile, Eq. (17), in terms of the maximum velocity umax for

both smooth-wall and rough-wall pipes; hence the formulas for calculating the flow-profile-modification factor a,
Eqs. (20) and (22), hold for both. This is true because, as White (2006) noted, the outer or defect layer is not affected by

wall roughness. However, this does not mean that wall roughness has no effect on a. For a given mean flow velocity U,

with increasing wall roughness, the pressure drop Dp, hence the shear stress tw and the friction velocity un increase, and

therefore the flow-profile-modification factor a increases.
3.2.2. Exponential law

The time-averaged flow velocity profile can also be expressed according to the exponential law (Streeter et al., 1998)

uðrÞ ¼ umax
y

R

� �1=n

; ð23Þ

where the exponent n is dependent on the Reynolds number. In the range Re=3� 103–105, n=7 for smooth-wall

circular pipes, which is the well-known 1
7
exponential law developed by Prandtl based on Nikuradse’s experimental data,

and n=4–5 for rough-wall circular pipes.

Then the mean flow velocity in the pipe is
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Fig. 1. Flow-profile-modification factor a versus U/un with the turbulent log law.
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and the integral
R
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Therefore
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For n=7, aE1.020; and for n=4–5, aE1.037–1.055.

The flow-profile-modification factor a variation with the exponent n is shown in Fig. 2. It decreases monotonically

with increasing n.

More recently, Barenblatt et al. (1997) proposed a more detailed power law, which is also based on Nikuradse’s

experiments

u

u�
¼

1ffiffiffi
3
p lnReþ

5

2

� �
u�y

n

� �3=ð2lnReÞ

: ð27Þ

Expressing it in terms of umax, we get

uðrÞ ¼ umax
y

R

� �3=ð2lnReÞ

: ð28Þ

It is almost the same as Prandtl’s power law, except that the exponent n is specified as a function of the Reynolds

number

n¼
2

3
ln Re: ð29Þ

The solid line in Fig. 3 shows the variation of the flow-profile-modification factor a with Reynolds number according

to the new power law using a logarithmic abscissa.

To compare with the log law, we should first find the relation between U/un in Eq. (20) and the Reynolds number

Re=U(2R)/n. From Eq. (13), we have
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Fig. 2. Flow-profile-modification factor a versus the exponent n with Prandtl’s turbulent power law.
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Substituting Eq. (18) into to Eq. (30), we can express the Reynolds number in terms of U/un

Re¼ 2
U

u�
exp k

U

u�
�B

� �
þ
3

2

� �
: ð31Þ

With Eqs. (20) and (31), we can plot the log-law a–Re curve with U/un as the parameter, which is shown in Fig. 3 by

the dashed line. In the range Re4104, the results given by both the power law and the log law are in fairly good

agreement with each other.

In Eqs. (27)–(31), the Reynolds number is defined in the case of a smooth-wall circular pipe as Re=U(2R)/n. For
rough-wall pipes, the viscosity n in this definition should be replaced by the ‘‘equivalent’’ viscosity ne (Monin and

Yaglom, 1975; Barenblatt et al., 1997); hence

Re¼
2RU

ne

¼
2RU

nþ 0:3u�e
�

2RU

0:3u�e
�100

R

e
: ð32Þ

From the above analyses, we conclude, for turbulent flow, that: (i) the log law and power low give results in fairly

good agreement with each other for the flow-profile-modification factor a; (ii) a decreases with increasing Reynolds

number Re for both smooth-wall and rough-wall pipes; (iii) in the range Re=3� 103–3� 105, we have a=1.015–1.040

for smooth-wall circular pipes, and a=1.035–1.055 for rough-wall circular pipes.
4. Equivalent flow velocity and equivalent mass

Define the equivalent flow velocity

U
˜
¼ aU ; ð33Þ

and the equivalent masses

M
˜
¼

M

a
; ðM˜ þ m̃Þ ¼ ðM þmÞ: ð34Þ

Then Eqs. (5) and (6) can be rewritten as

EI
@4w

@x4
þM

˜
U
˜ 2 @2w

@x2
þ 2M

˜
U
˜ @

2w

@x@t
þ ðM

˜
þ m̃Þ

@2w

@t2
¼ 0; ð35Þ

and

@4Z

@x4
þ ũ2
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respectively, where

ũ¼

ffiffiffiffiffiffi
M
˜

EI

s
LU

˜
¼

ffiffiffi
a
p

ffiffiffiffiffiffi
M

EI

r
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ffiffiffi
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is the equivalent dimensionless flow velocity, and

b˜ ¼
M
˜

M
˜
þ m̃
¼

M

aðM þmÞ
¼

b
a

ð38Þ

is the equivalent mass ratio.

Comparing Eqs. (35) and (36) with Eqs. (1) and (2), it can easily be seen that they have identical form. By substituting

U
˜
, M

˜
and M

˜
þ m̃ in Eq. (35) with U, M and M þm, and ũ, b

˜
in Eq. (36) with u and b, we get Eq. (1) and Eq. (2),

respectively. Therefore, problems involving pipes conveying fluid with different flow profiles can be solved with the

equations of motion for plug flow. The only thing to be done is to replace the flow velocity and the masses with

the equivalent flow velocity and the equivalent masses defined in Eqs. (33) and (34), or the dimensionless flow velocity

and the mass ratio with their corresponding equivalents defined in Eqs. (37) and (38).

In the new terminology of ‘equivalent flow velocity’, ‘equivalent mass’, ‘equivalent dimensionless flow velocity’ and

‘equivalent mass ratio’ coined in this paper, by ‘equivalent’ we mean ‘equivalent to that of plug flow’.

It should be noted that, in rescaling Eqs. (5) and (6) to Eqs. (35) and (36), the relations defined in Eqs. (33), (34), (37)

and (38) are velocity dependent because the parameter a is Reynolds number dependent.

In all forms of the equation of motion of pipes conveying fluid, from the simplest ones as given in Eqs.(1) and (2) to

more complicated nonlinear ones (see, e.g., Paı̈doussis, 2008, Appendix B), the flow velocity and masses appear in the

dimensionless equations only in the forms of u2 and u
ffiffiffi
b

p
, therefore, the modification and the rescaling introduced in

this section can be applied to all of them.

For other problems of axial-flow induced vibrations, such as with axial external flow along a cylinder (see, e.g., Lopes

et al., 2002), the effect of the non-uniform velocity profile of the flow can also be taken into consideration by similar

modification on the equations of motion. However, the rescaling introduced in this section cannot be applied to them,

because there exist terms involving the flow velocity and masses in the dimensionless equations other than in the forms

of u2 and u
ffiffiffi
b

p
.

5. Critical flow velocities for pipes conveying fluid for different flow profiles

5.1. Critical flow velocities for divergence

It has been known for a long time (e.g., Housner, 1952) that, for positively supported (with clamped or pinned

supports at both ends) pipes conveying fluid, when the flow velocity reaches some critical point, the pipe loses stability

statically by divergence, i.e., it buckles. This has been confirmed by experiments, by Dodds and Runyan (1965) and

others. At this point, the vibrations of the pipe disappear, and the time-dependent terms in the equation of motion

vanish; then Eq. (35) reduces to one similar to the critical equilibrium equation of a column subject to an axial

compressive force. The equivalent critical flow velocity and the dimensionless equivalent critical flow velocity for

divergence of the fluid-conveying pipe are given by

U
˜

cd ¼
p
mL

ffiffiffiffiffiffi
EI

M
˜

s
; ũcd ¼

p
m
; ð39Þ

where m is the length coefficient, which is related to the type of end supports of the pipe. For simply supported pipes,

m=1; for pipes clamped at both ends, m=0.5. From Eqs. (33), (34), (37) and (39), we can obtain the critical flow

velocity and the dimensionless critical flow velocity for divergence

Ucd ¼
p
mL

ffiffiffiffiffiffiffiffi
EI

aM

r
; ucd ¼

p
m
ffiffiffi
a
p

;
ð40Þ

both of which are 1=
ffiffiffi
a
p

times that with plug flow.

By substituting the previously obtained a into Eq. (40), the critical flow velocities for divergence can be calculated in the

cases of laminar flow in circular pipes, turbulent flow in smooth-wall circular pipes, and turbulent flow in rough-wall circular

pipes, which are found to be 13.4%, 0.74–1.9%, and 1.7–2.6%, respectively, lower than that with plug flow.
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5.2. Critical flow velocities for flutter

It is known that fluid-conveying cantilevers are nonconservative in nature, and no divergence can occur. Instead, they

lose stability by single-mode flutter (Gregory and Paı̈doussis, 1966; Chen, 1987; Paı̈doussis and Li, 1993; Paı̈doussis,

1970, 1998, 2008). By employing the Galerkin approach to approximate the partial differential equation of motion as a

finite set of coupled ordinary differential equations and solving for the eigenvalues of its coefficient matrix, the critical

flow velocity for flutter can be obtained.

Take Eq. (6) as an example, and let

Zðx; tÞ ¼
XN

i ¼ 1

ciðxÞTiðtÞ; ð41Þ

where ci(x) is the ith normalized in vacuo beam eigenfunction for a cantilever. Multiplying Eq. (6) by cj(x), and
integrating with respect to x along [0,1], we have

Tj
00 ¼ �l4j Tj�au2

XN

i ¼ 1

Ti

Z 1

0

ci
00 cjdx�2u

ffiffiffi
b

p XN

i ¼ 1

T 0i

Z 1

0

c0icjdxi; ðj ¼ 1; 2; � � � ;NÞ; ð42Þ

in which the orthogonality of the beam eigenfunctions has been accounted for. Eq. (42) represents a set of second-order

ordinary differential equations. In order to solve it by standard procedures, we reduce it to first order by letting

z¼ ½T1 � � � Tn T 01 T 0n	
T; ð43Þ

thus, Eq. (42) is transformed to a set of first-order ordinary differential equations with 2n variables

z0 ¼Cz: ð44Þ

The condition for the pipe to flutter is that the coefficient matrix C of Eq. (44) has at least one eigenvalue with

non-negative real part.

In Fig. 4 are shown the results calculated with N=10 for the dimensionless critical flow velocities for flutter varying

with the mass ratio for different flow profiles. The curve for plug flow (solid line) is the same as that given in Paı̈doussis

(1998). The S-shaped segments are associated with the sequence for the pipe to first lose stability by flutter, then regain

it, and finally lose it again (according to linear theory), as the flow velocity increases. The negative-slope portions of the

curves correspond to the thresholds of restabilization.

For plug flow (a=1), it is well known that, as b-1, more and more beam modes participate in the dynamics, hence

the results are sensitive to N. For laminar flow (a=1.333), however, the maximum difference between the critical flow

velocity obtained with N=10 and that with N=20 is found to be less than 0.1%. The reason is that, according to

Eq. (38), a=1.333, b=1 is equivalent to a=1, b=0.75 (both have the same equivalent mass ratio b
˜
¼ 0:75); that is,

b=1 for laminar flow is at the same level of sensitivity to N as b=0.75 for plug flow.
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Fig. 4. Dimensionless critical flow velocities ucf for flutter versus mass ratio b for cantilevered pipes conveying fluid with different flow

profiles.
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In Fig. 4 it can be seen that the dimensionless critical flow velocity ucf decreases with increasing flow-profile-

modification factor a for a given mass ratio b. The rate of decrease of ucf in a particular curve compared with that for

plug flow is not a constant. It depends on b, but does not change monotonically as b increases. When b=0.8, the

decrease of the critical flow velocity for laminar flow (ucf=8.65) compared with that for plug flow (ucf=13.50) is as high

as 36%!

Another significant phenomenon revealed by Fig. 4 is that as b-1, while a plug flow model predicts an infinite

critical flow velocity, i.e., no flutter may occur, real-fluid models predict finite ones, i.e., flutter is possible!

By using the concepts of equivalent flow velocity and equivalent mass ratio defined in Eqs. (37) and (38), we only need

to calculate for the solid line with plug flow (a=1), because it also represents the ũcf versus b
˜
relation for all flow

profiles. Those with other flow profiles can be obtained by compressing this curve downwards to 1=
ffiffiffi
a
p

times in height

and stretching it rightwards to a times in width, with the coordinate axes unmoved. For instance, for laminar flow

(a=1.333), when b=0.8, b
˜
¼ b=a¼ 0:6, the solid line gives ũcf � 9:99; thus, ucf ¼ ũcf =

ffiffiffi
a
p
� 8:65. The processes of

compression and stretching are shown by the two arrows in Fig. 4. Since overall the curve is ascending, both the vertical

compression and the horizontal stretching reduce the critical flow velocity for a given b. Hence, flow profiles have an

even greater effect on the critical flow velocity for flutter than that they do for divergence, in which case the stretching

has no effect because ũcd is independent of b
˜
, and therefore ũcd�b

˜
would be a horizontal line.

It is the flow velocity profile in the pipe cross-section that directly affects the equation of motion and the critical flow

velocities of fluid-conveying pipes, while the flow velocity profile depends only on the flow type and is not explicitly

related to the viscosity coefficient. The viscosity coefficient plays an implicit role via the Reynolds number, which

determines the flow type.
6. Conclusions

The effects of the non-uniformity of the flow velocity distribution of the real fluid on the equation of motion for fluid-

conveying pipes have been ignored to date. In this paper, the centrifugal force term in the equation of motion is

modified by first calculating the centrifugal force for every fluid particle with different flow profiles, and then integrating

over the cross-sectional area. The flow-profile-modification factors are found to be 1.333, 1.015–1.040 and 1.035–1.055

for laminar flow in circular pipes, turbulent flow in smooth-wall circular pipes and turbulent flow in rough-wall circular

pipes, respectively. The critical flow velocities for divergence in the above-mentioned three cases are found to be 13.4%,

0.74–1.9% and 1.7–2.6%, respectively, lower than with plug flow; those for flutter are even lower, and could reach 36%

for the laminar flow profile in the case of b=0.8. By introducing two new concepts of equivalent flow velocity and

equivalent mass, fluid-conveying pipe problems with different flow profiles can be solved with the equation of motion

for plug flow. The effects of fluid viscosity on the equation of motion and the critical flow velocity of a fluid-conveying

pipe are explicitly related only to the flow profile.

Particularly significant are the results for laminar flow, especially in conjunction with applications in MEMS; see, for

instance, Rinaldi et al. (2010).
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